- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, Raj (1)
-
Azad, Ariful (1)
-
Fiddyment, CR (1)
-
Gumennik, Alexander (1)
-
Jadhao, Vikram (1)
-
Li, Wenhui (1)
-
Majeske, Nicholas (1)
-
Miller, Tyson (1)
-
Rehman, Abdul (1)
-
Roy, Ryan (1)
-
Sharma, Prateek (1)
-
Sohrabpoor, Hamed (1)
-
Vaidya, Shreyas Sunil (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop a comprehensive framework for storing, analyzing, forecasting, and visualizing industrial energy systems consisting of multiple devices and sensors. Our framework models complex energy systems as a dynamic knowledge graph, utilizes a novel machine learning (ML) model for energy forecasting, and visualizes continuous predictions through an interactive dashboard. At the core of this framework is A-RNN, a simple yet efficient model that uses dynamic attention mechanisms for automated feature selection. We validate the model using datasets from two manufacturers and one university testbed containing hundreds of sensors. Our results show that A-RNN forecasts energy usage within 5% of observed values. These enhanced predictions are as much as 50% more accurate than those produced by standard RNN models that rely on individual features and devices. Additionally, A-RNN identifies key features that impact forecasting accuracy, providing interpretability for model forecasts. Our analytics platform is computationally and memory efficient, making it suitable for deployment on edge devices and in manufacturing plants.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
